Refractometric Fiber Optic Sensor for Detecting Salinity of Water

نویسندگان

  • Supriya S. Patil
  • Arvind D. Shaligram
چکیده

Salinity is an important property of industrial and natural waters. It is defined as the measure of the mass of dissolved salts in a given mass of solution. High salinity has an impact on people and industries reliant on water. High levels of salt can reduce crop yields, limit the choice of crops that can be grown and, at higher concentrations over long periods, can kill trees and make the land unsuitable for agricultural purposes. Salinity increases the “hardness” of water, which can mean more soap and detergents have to be used or water softeners installed and maintained. This can also cause scaling in pipes and heaters. The experimental determination of the salt content by drying and weighing presents some difficulties due to the loss of some components. The only reliable way to determine the true or absolute salinity of natural water is to make a complete chemical analysis. However, the method is time consuming and cannot yield the precision necessity for accurate work. Thus to determine salinity, one normally used method involves the measurement of a physical property such as conductivity, density or refractive index. The paper reports the refractometric fiber optic sensor for detection of salinity of water. The mathematical model is developed for detection of the refractive index of liquid and simulated in MATLAB. The fiber optic sensor probe is developed to measure the refractive index of the solution containing different amount of salt dissolved in water i.e. different molar concentrations. Experiments are carried out using the developed probe for these solutions. Experimental results are showing good agreement with the simulated results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitivity Enhancement of Fiber Optic Diesel Adulteration Detection Sensor Using Stripped Clad SBend Section

A novel geometry for enhancing the sensitivity of intensity modulated refractometric fiber optic sensor for detection of adulteration level in diesel by kerosene is proposed. In this multimode plastic optical fiber is uncladded for specific length and bent into S shape. This geometry is simulated and analyzed using Beam Propagation Method in Beam prop RSOFT software. When sensor is immersed in ...

متن کامل

Fiber - Optic Sensing of Linear Thermal Expansion (RESEARCH NOTES)

The use of a LED fiber-optic sensor to measure displacement and linear thermal expansion is described. It has a sensitivity of about 0.6 mV/mm, a resolution of 1.25 mm, and a dynamic rang of 400 mm for displacement measurements. For thermal expansion, it shows a sensitivity of about 3.5 mV/C, and the experimental linear expansion values are in agreement with those calculated. The reported senso...

متن کامل

Chemical detection in liquid media with a refractometric sensor based on a multimode optical fibre

In this paper the physical basis for the design of an optical fibre sensor suited for aqueous medium and gas phase based on the excitation of an evanescent wave at the core/cladding interface is developed. The detection based on the refractive index changes (between 1.41 and 1.45) of the infinite dielectric medium which can be an electrolyte or a sol-gel polymer deposited on the uncladed part o...

متن کامل

Sensitivity Enhancement of Fiber Optic Diesel Adulteration Detection Sensor Using Stripped Clad SBend Section

A novel geometry for enhancing the sensitivity of intensity modulated refractometric fiber optic sensor for detection of adulteration level in diesel by kerosene is proposed. In this multimode plastic optical fiber is uncladded for specific length and bent into S shape. This geometry is simulated and analyzed using Beam Propagation Method in Beam prop RSOFT software. When sensor is immersed in ...

متن کامل

Refractometric Fiber Optic Adulteration Level Detector for Diesel

Adulteration of diesel with kerosene is common malpractice since kerosene is cheaper than diesel. Such adulteration results in increased pollution, reduced lifetime of components, decrease in engine or machine performance etc. This paper presents a simple, extrinsic intensity modulated fiber optic sensor for determining adulteration of diesel by kerosene. The sensing principle is based on varia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013